Частота, амплитуда, период и фаза колебаний - простыми словами

Чтобы описать колебательные процессы и отличить одни колебания от других, используют 6 характеристик. Они называются так (рис. 1):

  • амплитуда,
  • период,
  • частота,
  • циклическая частота,
  • фаза,
  • начальная фаза.
Характеристики колебаний

Рис. 1. Основные характеристики колебаний – это амплитуда, период и начальная фаза

Такие величины, как амплитуду и период, можно определить по графику колебаний.

Начальную фазу, так же, определяют по графику, с помощью интервала времени \(\large \Delta t\), на который относительно нуля сдвигается начало ближайшего периода.

Частоту и циклическую частоту вычисляют из найденного по графику периода, по формулам. Они находятся ниже в тексте этой статьи.

А фазу определяют с помощью формулы, в которую входит интересующий нас момент времени t колебаний. Читайте далее.

Что такое амплитуда

Амплитуда – это наибольшее отклонение величины от равновесия, то есть, максимальное значение колеблющейся величины.

Измеряют в тех же единицах, в которых измерена колеблющаяся величина. К примеру, когда рассматривают механические колебания, в которых изменяется координата, амплитуду измеряют в метрах.

В случае электрических колебаний, в которых изменяется заряд, ее измеряют в Кулонах. Если колеблется ток – то в Амперах, а если – напряжение, то в Вольтах.

Часто обозначают ее, приписывая к букве, обозначающей амплитуду индекс «0» снизу.

К примеру, пусть колеблется величина \( \large x \). Тогда символом \( \large x_{0} \) обозначают амплитуду колебаний этой величины.

Иногда для обозначения амплитуды используют большую латинскую букву A, так как это первая буква английского слова «amplitude».

С помощью графика амплитуду можно определить так (рис. 2):

Амплитуду на графике находят так

Рис. 2. Амплитуда – это максимальное отклонение от горизонтальной оси либо вверх, либо вниз. Горизонтальная ось проходит через уровень нуля на оси, на которой отмечены амплитуды

Что такое период

Когда колебания повторяются точно, изменяющаяся величина принимает одни и те же значения через одинаковые кусочки времени. Такой кусочек времени называют периодом.

Обозначают его обычно большой латинской буквой «T» и измеряют в секундах.

\( \large T \left( c \right) \) – период колебаний.

Одна секунда – достаточно большой интервал времени. Поэтому, хотя период и измеряют в секундах, но для большинства колебаний он будет измеряться долями секунды.

Чтобы по графику колебаний определить период (рис. 3), нужно найти два одинаковых значения колеблющейся величины. После, провести от этих значений к оси времени пунктиры. Расстояние между пунктирами – это период колебаний.

Период – это расстояние между двумя одинаковыми значениями колеблющейся величины

Рис. 3. Период колебаний – это горизонтальное расстояние между двумя похожими точками на графике

Период – это время одного полного колебания.

На графике период найти удобнее одним из таких способов (рис. 4):

По графику колебаний период удобно определять так

Рис. 4. Удобно определять период, как расстояние между двумя соседними вершинами, либо между двумя впадинами

Что такое частота

Обозначают ее с помощью греческой буквы «ню» \( \large \nu \).

Частота отвечает на вопрос: «Сколько полных колебаний выполняется за одну секунду?» Или же: «Сколько периодов умещается в интервал времени, равный одной секунде?».

Поэтому, размерность частоты — это единицы колебаний в секунду:

\( \large \nu \left( \frac{1}{c} \right) \).

Иногда в учебниках встречается такая запись \( \large \displaystyle \nu \left( c^{-1} \right) \), потому, что по свойствам степени \( \large  \displaystyle \frac{1}{c} = c^{-1} \).

Начиная с 1933 года частоту указывают в Герцах в честь Генриха Рудольфа Герца. Он совершил значимые открытия в физике, изучал колебания и доказал, что существуют электромагнитные волны.

Одно колебание в секунду соответствует частоте в 1 Герц.

\[ \large \displaystyle \boxed{ \frac{ 1 \text{колебание}}{1 \text{секунда}} = 1 \text{Гц} }\]

Чтобы с помощью графика определить частоту, нужно на оси времени определить период. А затем посчитать частоту по такой формуле:

\[ \large \boxed{ \nu = \frac{1}{T} }\]

Существует еще один способ определить частоту с помощью графика колеблющейся величины. Нужно отмерить на графике интервал времени, равный одной секунде, и сосчитать количество периодов колебаний, уместившихся в этот интервал (рис. 5).

Частота – это количество периодов, уместившихся в одну секунду

Рис. 5. На графике частота – это количество периодов, уместившихся в одну секунду

Что такое циклическая частота

Колебательное движение и движение по окружности имеют много общего – это повторяющиеся движения. Одному полному обороту соответствует угол \(\large 2\pi\) радиан. Поэтому, кроме интервала времени 1 секунда, физики используют интервал времени, равный \(\large 2\pi\) секунд.

Число полных колебаний для такого интервала времени, называется циклической частотой и обозначается греческой буквой «омега»:

\( \large \displaystyle \omega \left( \frac{\text{рад}}{c} \right) \)

Примечание: Величину \( \large \omega \) так же называют круговой частотой, а еще — угловой скоростью (ссылка).

Циклическая частота отвечает на вопрос: «Сколько полных колебаний выполняется за \(\large 2\pi\) секунд?» Или же: «Сколько периодов умещается в интервал времени, равный \(\large 2\pi\) секунд?».

Обычная \( \large \nu \) и циклическая \( \large \omega \) частота колебаний связаны формулой:

\[ \large \boxed{ \omega = 2\pi \cdot \nu }\]

Слева в формуле количество колебаний измеряется в радианах на секунду, а справа – в Герцах.

Чтобы с помощью графика колебаний определить величину \( \large \omega \), нужно сначала найти период T.

Затем, воспользоваться формулой \( \large \displaystyle \nu = \frac{1}{T} \) и вычислить частоту \( \large \nu \).

И только после этого, с помощью формулы \( \large \omega = 2\pi \cdot \nu \) посчитать циклическую \( \large \omega \) частоту.

Для грубой устной оценки можно считать, что циклическая частота превышает обычную частоту примерно в 6 раз численно.

Определить величину \( \large \omega \) по графику колебаний можно еще одним способом. На оси времени отметить интервал, равный \(\large 2\pi\), а затем, сосчитать количество периодов колебаний в этом интервале (рис. 6).

Циклическая частота – это количество периодов, уместившихся в 2 пи секунд

Рис. 6. На графике циклическая (круговая) частота – это количество периодов, уместившихся в 2 пи секунд

Что такое начальная фаза и как определить ее по графику колебаний

Отклоним качели на некоторый угол от равновесия и будем удерживать их в таком положении. Когда мы отпустим их, качели начнут раскачиваться. А старт колебаний произойдет из угла, на который мы их отклонили.

Такой, начальный угол отклонения, называют начальной фазой колебаний. Обозначим этот угол (рис. 7) какой-нибудь греческой буквой, например, \(\large \varphi_{0} \).

\(\large \varphi_{0} \left(\text{рад} \right) \) — начальная фаза, измеряется в радианах (или градусах).

Начальная фаза колебаний – это угол, на который мы отклонили качели, перед тем, как их отпустить. Из этого угла начнется колебательный процесс.

Начальная фаза – это угол отклонения качелей перед началом их колебаний

Рис. 7. Угол отклонения качелей перед началом колебаний

Рассмотрим теперь, как величина \(\large \varphi_{0} \) влияет на график колебаний (рис. 8). Для удобства будем считать, что мы рассматриваем колебания, которые происходят по закону синуса.

Кривая, обозначенная черным на рисунке, начинает период колебаний из точки t = 0. Эта кривая является «чистым», не сдвинутым синусом. Для нее величину начальной фазы \(\large \varphi_{0} \) принимаем равной нулю.

Начальная фаза влияет на сдвиг графика по горизонтальной оси

Рис. 8. Вертикальное положение стартовой точки в момент времени t = 0 и сдвиг графика по горизонтали определяется начальной фазой

Вторая кривая на рисунке обозначена красным цветом. Начало ее периода сдвинуто вправо относительно точки t = 0. Поэтому, для красной кривой, начавшей новый период колебаний спустя время \(\large \Delta t\), начальный угол \(\large \varphi_{0} \) будет отличаться от нулевого значения.

Определим угол \(\large \varphi_{0} \) с помощью графика колебаний.

Обратим внимание (рис. 8) на то, что время, лежащее на горизонтальной оси, измеряется в секундах, а величина \(\large \varphi_{0} \) — в радианах. Значит, нужно связать формулой кусочек времени \(\large \Delta t\) и соответствующий ему начальный угол \(\large \varphi_{0} \).

Как вычислить начальный угол по интервалу смещения

Алгоритм нахождения начального угла состоит из нескольких несложных шагов.

  • Сначала определим интервал времени, обозначенный синими стрелками на рисунке. На осях большинства графиков располагают цифры, по которым это можно сделать. Как видно из рис. 8, этот интервал \(\large \Delta t\) равен 1 сек.
  • Затем определим период. Для этого отметим одно полное колебание на красной кривой. Колебание началось в точке t = 1, а закончилось в точке t =5. Взяв разность между этими двумя точками времени, получим значение периода.

\[\large T = 5 – 1 = 4 \left( \text{сек} \right)\]

Из графика следует, что период T = 4 сек.

  • Рассчитаем теперь, какую долю периода составляет интервал времени \(\large \Delta t\). Для этого составим такую дробь \(\large \displaystyle \frac{\Delta t }{T} \):

\[\large \frac{\Delta t }{T} = \frac{1}{4} \]

Полученное значение дроби означает, что красная кривая сдвинута относительно точки t = 0 и черной кривой на четверть периода.

  • Нам известно, что одно полное колебание — один полный оборот (цикл), синус (или косинус) совершает, проходя каждый раз угол \(\large 2\pi \). Найдем теперь, как связана найденная доля периода с углом \(\large 2\pi \) полного цикла.

Для этого используем формулу:

\[\large \boxed{ \frac{\Delta t }{T} \cdot 2\pi = \varphi_{0} }\]

\(\large \displaystyle \frac{1}{4} \cdot 2\pi = \frac{\pi }{2} =\varphi_{0} \)

Значит, интервалу \(\large \Delta t\) соответствует угол \(\large \displaystyle \frac{\pi }{2} \) – это начальная фаза для красной кривой на рисунке.

  • В заключение обратим внимание на следующее. Начало ближайшего к точке t = 0 периода красной кривой сдвинуто вправо. То есть, кривая запаздывает относительно «чистого» синуса.

Чтобы обозначить запаздывание, будем использовать знак «минус» для начального угла:

\[\large \varphi_{0} = — \frac{\pi }{2} \]

Примечание: Если на кривой колебаний начало ближайшего периода лежит левее точки t = 0, то в таком случае, угол \(\large \displaystyle \frac{\pi }{2} \) имеет знак «плюс».

Для не сдвинутого влево, либо вправо, синуса или косинуса, начальная фаза нулевая \(\large \varphi_{0} = 0 \).

Для синуса или косинуса, сдвинутого влево по графику и опережающего обычную функцию, начальная фаза берется со знаком «+».

А если функция сдвинута вправо и запаздывает относительно обычной функции, величину \(\large \varphi_{0} \) записываем со знаком «-».

Примечания:

  1. Физики начинают отсчет времени из точки 0. Поэтому, время в задачах будет величиной не отрицательной.
  2. На графике колебаний начальная фаза \( \varphi_{0}\) влияет на вертикальный сдвиг точки, из которой стартует колебательный процесс. Значит, можно для простоты сказать, что колебания имеют начальную точку.

Благодаря таким допущениям график колебаний при решении большинства задач можно изображать, начиная из окрестности нуля и преимущественно в правой полуплоскости.

Что такое фаза колебаний

Рассмотрим еще раз обыкновенные детские качели (рис. 9) и угол их отклонения от положения равновесия. С течением времени этот угол изменяется, то есть, он зависит от времени.

Фаза изменяется в процессе колебаний

Рис. 9. Угол отклонения от равновесия – фаза, изменяется в процессе колебаний

В процессе колебаний изменяется угол отклонения от равновесия. Этот изменяющийся угол называют фазой колебаний и обозначают \(\varphi\).

Различия между фазой и начальной фазой

Существуют два угла отклонения от равновесия – начальный, он задается перед началом колебаний и, угол, изменяющийся во время колебаний.

Первый угол называют начальной \( \varphi_{0}\) фазой (рис. 10а), она считается неизменной величиной. А второй угол – просто \( \varphi\) фазой (рис. 10б) – это величина переменная.

Фаза и начальная фаза имеют различия

Рис. 10. Перед началом колебаний задаем начальную фазу — начальный угол отклонения от равновесия. А угол, который изменяется во время колебаний, называют фазой

Как на графике колебаний отметить фазу

На графике колебаний фаза \(\large \varphi\) выглядит, как точка на кривой. С течением времени эта точка сдвигается (бежит) по графику слева направо (рис. 11). То есть, в разные моменты времени она будет находиться на различных участках кривой.

На рисунке отмечены две крупные красные точки, они соответствуют фазам колебаний в моменты времени t1 и t2.

Фазу обозначают бегущей по кривой точкой

Рис. 11. На графике колебаний фаза – это точка, скользящая по кривой. В различные моменты времени она находится в разных положениях на графике

А начальная фаза на графике колебаний выглядит, как место, в котором находится точка, лежащая на кривой колебаний, в момент времени t=0. На рисунке дополнительно присутствует одна мелкая красная точка, она соответствует начальной фазе колебаний.

Как определить фазу с помощью формулы

Пусть нам известны величины \(\large \omega\) — циклическая частота и \(\large \varphi_{0}\) — начальная фаза. Во время колебаний эти величины не изменяются, то есть, являются константами.

Время колебаний t будет величиной переменной.

Фазу \(\large \varphi\), соответствующую любому интересующему нас моменту t времени, можно определить из такого уравнения:

\[\large \boxed{ \varphi = \omega \cdot t + \varphi_{0} }\]

Левая и правая части этого уравнения имеют размерность угла (т. е. измеряются в радианах, или градусах). А подставляя вместо символа t в это уравнение интересующие нас значения времени, можно получать соответствующие им значения фазы.

Что такое разность фаз

Обычно понятие разности фаз применяют, когда сравнивают два колебательных процесса между собой.

Рассмотрим два колебательных процесса (рис. 12). Каждый имеет свою начальную фазу.

Обозначим их:

\( \large \varphi_{01}\) – для первого процесса и,

\( \large \varphi_{02}\) – для второго процесса.

Разность фаз двух колебаний

Рис. 12. Для двух колебаний можно ввести понятие разности фаз

Определим разность фаз между первым и вторым колебательными процессами:

\[\large \boxed{ \Delta \varphi = \varphi_{01} —  \varphi_{02} }\]

Величина \(\large \Delta \varphi \) показывает, на сколько отличаются фазы двух колебаний, она называется разностью фаз.

Как связаны характеристики колебаний — формулы

Движение по окружности и колебательное движение имеют определенную схожесть, так как эти виды движения могут быть периодическими.

Поэтому, основные формулы, применимые для движения по окружности, подойдут так же, для описания колебательного движения.

  • Связь между периодом, количеством колебаний и общим временем колебательного процесса:

\[\large \boxed{ T \cdot N = t }\]

\( \large T \left( c \right) \) – время одного полного колебания (период колебаний);

\( \large N \left( \text{шт} \right) \) – количество полных колебаний;

\( \large t \left( c \right) \) – общее время для нескольких колебаний;

  • Период и частота колебаний связаны так:

\[\large \boxed{ T = \frac{1}{\nu} }\]

\(\large \nu \left( \text{Гц} \right) \) – частота колебаний.

  • Количество и частота колебаний связаны формулой:

\[\large \boxed{ N = \nu \cdot t}\]

  • Связь между частотой и циклической частотой колебаний:

\[\large \boxed{ \nu \cdot 2\pi = \omega }\]

\(\large \displaystyle \omega \left( \frac{\text{рад}}{c} \right) \) – циклическая (круговая) частота колебаний.

  • Фаза и циклическая частота колебаний связаны так:

\[\large \boxed{ \varphi = \omega \cdot t + \varphi_{0} }\]

\(\large \varphi_{0} \left( \text{рад} \right) \) — начальная фаза;

\(\large \varphi \left( \text{рад} \right) \) – фаза (угол) в выбранный момент времени t;

  • Между фазой и количеством колебаний связь описана так:

\[\large \boxed{ \varphi = N \cdot 2\pi }\]

  • Интервал времени \(\large \Delta t \) (сдвигом) и начальная фаза колебаний связаны:

\[\large \boxed{ \frac{\Delta t }{T} \cdot 2\pi = \varphi_{0} }\]

\(\large \Delta t \left( c \right) \) — интервал времени, на который относительно точки t=0 сдвинуто начало ближайшего периода.

Рассмотрим величины, с помощью которых можно охарактеризовать колебания.

Swings-87198.gif

Сравним колебания двух качелей на рисунке — пустых качелей и качелей с мальчиком. Качели с мальчиком колеблются с большим размахом, т. е. их крайние положения находятся дальше от положения равновесия, чем у пустых качелей.

Наибольшее (по модулю) отклонение колеблющегося тела от положения равновесия называется амплитудой колебаний.

Обрати внимание!

Амплитуда колебаний, как правило, обозначается буквой \(А\) и в СИ измеряется в метрах (м).

Пример:

мальчик на каченях1.png

Обрати внимание!

Амплитуду можно измерять также в единицах плоского угла, например в градусах, поскольку дуге окружности соответствует определённый центральный угол, т. е. угол с вершиной в центре окружности.

Колеблющееся тело совершает одно полное колебание, если от начала колебаний проходит путь, равный четырём амплитудам.

Промежуток времени, в течение которого тело совершает одно полное колебание, называется периодом колебаний.

Обрати внимание!

Период колебаний обозначается буквой \(Т\) и в СИ измеряется в секундах (с).

Пример:

ударим по столу двумя линейками — металлической и деревянной. Линейки после этого начнут колебаться, но за один и тот же промежуток времени металлическая линейка (А) сделает больше колебаний, чем деревянная (В).

частота.png

Число колебаний в единицу времени называется частотой колебаний.

Обрати внимание!

Обозначается частота греческой буквой ν («ню»). За единицу частоты принято одно колебание в секунду. Эта единица в честь немецкого учёного Генриха Герца названа герцем (Гц).

Период колебания \(Т\) и частота колебаний ν связаны следующей зависимостью:

T=1ν.

Свободные колебания в отсутствие трения и сопротивления воздуха называются собственными колебаниями, а их частота — собственной частотой колебательной системы.

Любая колебательная система имеет определённую собственную частоту, зависящую от параметров этой системы. Например, собственная частота пружинного маятника зависит от массы груза и жёсткости пружины.

Swings-87198.gif

Рассмотрим колебания двух одинаковых пустых качелей на рисунке выше. В один и тот же момент времени красные качели из положения равновесия начинают движение вперед, а зелёные качели из положения равновесия движутся назад. Качели колеблются с одной и той же частотой и с одинаковыми амплитудами. Однако эти колебания отличаются друг от друга: в любой момент времени скорости качелей направлены в противоположные стороны. В таком случае говорят, что колебания качелей происходят в противоположных фазах.

Красные пустые качели и качели с мальчиком тоже колеблются с одинаковыми частотами. Скорости этих качелей в любой момент времени направлены одинаково. В этом случае говорят, что качели колеблются в одинаковых фазах.

Физическая величина, называемая фазой, используется не только при сравнении колебаний двух или нескольких тел, но и для описания колебаний одного тела.

Таким образом, колебательное движение характеризуется амплитудой, частотой (или периодом) и фазой.

Источники:

Физика. 9 кл.: учебник / Перышкин А. В., Гутник Е. М. — М.: Дрофа, 2014. — 319 с.www.ru.depositphotos.com, сайт «Фотобанк с премиум-коллекцией фотографий, векторов и видео»

www.mognovse.ru, сайт «Можно все»

Работа большинства механизмов основана на простейших законах физики и математики. Довольно большое распространение получило понятие пружинного маятника. Подобный механизм получил весьма широкое распространение, так как пружина обеспечивает требуемую функциональность, может быть элементом автоматических устройств. Рассмотрим подробнее подобное устройство, принцип действия и многие другие моменты подробнее.

Пружинный маятник

Определения пружинного маятника

Как ранее было отмечено, пружинный маятник получил весьма широкое распространение. Среди особенностей можно отметить следующее:

  1. Устройство представлено сочетанием груза и пружины, масса которой может не учитываться. В качестве груза может выступать самый различный объект. При этом на него может оказываться воздействие со стороны внешней силы. Распространенным примером можно назвать создание предохранительного клапана, который устанавливается в системе трубопровода. Крепление груза к пружине проводится самым различным образом. При этом используется исключительно классический винтовой вариант исполнения, который получил наиболее широкое распространение. Основные свойства во многом зависят от типа применяемого материала при изготовлении, диаметра витка, правильности центровки и многих других моментов. Крайние витки часто изготавливаются таким образом, чтобы могли воспринимать большую нагрузку при эксплуатации.
  2. До начала деформации полная механическая энергия отсутствует. При этом на тело не влияет сила упругости. Каждая пружина имеет исходное положение, которое она сохраняет на протяжении длительного периода. Однако, за счет определенной жесткости происходит фиксация тела в начальном положении. Имеет значение то, каким образом прикладывается усилие. Примером назовем то, что она должна быть направлена вдоль оси пружины, так как в противном случае есть вероятность появления деформации и многих других проблем. У каждой пружины есть свои определенный придел сжатия и растяжения. При этом максимальное сжатие представлено отсутствием зазора между отдельными витками, при растяжении есть момент, когда происходит невозвратная деформация изделия. При слишком сильном удлинении проволоки происходит изменение основных свойств, после чего изделие не возвращается в свое первоначальное положение.
  3. В рассматриваемом случае колебания совершаются за счет действия силы упругости. Она характеризуется довольно большим количество особенностей, которые должны учитываться. Воздействие упругости достигается за счет определенного расположения витков и типа применяемого материала при изготовлении. При этом сила упругости может действовать в обе стороны. Чаще всего происходит сжатие, но также может проводится растяжение – все зависит от особенностей конкретного случая.
  4. Скорость перемещения тела может варьировать в достаточно большом диапазоне, все зависит от того, какое оказывается воздействие. К примеру, пружинный маятник может перемещать подвешенный груз в горизонтальной и вертикальной плоскости. Действие направленного усилия во многом зависит от вертикальной или горизонтальной установки.

Определение пружинного маятника

В целом можно сказать, что пружинный маятник определение довольно обобщенное. При этом скорость перемещения объекта зависит от различных параметров, к примеру, величины приложенного усилия и других моментов. Перед непосредственным проведением расчетов проводится создание схемы:

  1. Указывается опора, к которой крепится пружина. Зачастую для ее отображения рисуется линия с обратной штриховкой.
  2. Схематически отображается пружина. Она часта представлена волнистой линией. При схематическом отображении не имеет значение длина и диаметральный показатель.
  3. Также изображается тело. Оно не должно соответствовать размерам, однако имеет значение место непосредственного крепления.

Схема требуется для схематического отображения всех сил, которые оказывают влияние на устройство. Только в этом случае можно учесть все, что влияет на скорость перемещения, инерцию и многие другие моменты.

Пружинные маятники применяются не только при расчетах ил решении различных задач, но также и на практике. Однако, не все свойства подобного механизма применимы.

Примером можно назвать случай, когда колебательные движения не требуются:

  1. Создание запорных элементов.
  2. Пружинные механизмы, связанные с транспортировкой различных материалов и объектов.

Проводимые расчеты пружинного маятника позволяют подобрать наиболее подходящий вес тела, а также тип пружины. Она характеризуется следующими особенностями:

  1. Диаметр витков. Он может быть самым различным. От показателя диаметра во многом зависит то, сколько требуется материала для производства. Диаметр витков также определяет то, какое усилие должно прикладываться для полного сжатия или частичного растяжения. Однако, увеличение размеров может создать существенные трудности с установкой изделия.
  2. Диаметр проволоки. Еще одним важным параметром можно назвать диаметральный размер проволоки. Он может варьировать в широком диапазоне, зависит прочность и степень упругости.
  3. Длина изделия. Этот показатель определяет то, какое усилие требуется для полного сжатия, а также какой упругостью может обладать изделие.
  4. Тип применяемого материала также определяет основные свойства. Чаще всего пружина изготавливается при применении специального сплава, который обладает соответствующие свойствами.

При математических расчетах многие моменты не учитываются. Усилие упругости и многие другие показатели выявляются путем расчета.

Виды пружинного маятника

Выделяют несколько различных видов пружинного маятника. Стоит учитывать, что классификация может проводится по типу устанавливаемой пружины. Среди особенностей отметим:

  1. Довольно большое распространение получили вертикальные колебания, так как в этом случае на груз не оказывается сила трения и другое воздействие. При вертикальном расположении груза существенно увеличивается степень воздействия силы тяжести. Распространен этот вариант исполнения при проведении самых различных расчетов. За счет силы тяжести есть вероятность того, что тело в исходной точке будет совершать большое количество инерционных движений. Этому также способствует упругость и инерция движения тела в конце хода.
  2. Также применяется горизонтальный пружинный маятник. В этом случае груз находится на опорной поверхности и на момент перемещения также возникает трение. При горизонтальном расположении сила тяжести работает несколько иначе. Горизонтальное расположение тела получило широкое распространение в различных задачах.

Рассчитывается движение пружинного маятника можно при использовании достаточно большого количества различных формул, который должны учитывать воздействие всех сил. В большинстве случаев устанавливается классическая пружина. Среди особенностей отметим следующее:

  1. Классическая витая пружина сжатия сегодня получила весьма широкое распространение. В этом случае между витками есть пространство, которое называется шагом. Пружина сжатия может и растягиваться, но зачастую она для этого не устанавливается. Отличительной особенностью можно назвать то, что последние витки выполнены в виде плоскости, за счет чего обеспечивается равномерное распределения усилия.
  2. Может устанавливаться вариант исполнения для растяжения. Он рассчитан на установку в случае, когда приложенное усилие становится причиной увеличения длины. Для крепления проводится размещение крючков.

Распространены оба варианта исполнения. При этом важно уделить внимание тому, чтобы сила прикладывалась параллельно оси. В противном случае есть вероятность смещения витков, что становится причиной возникновения серьезных проблем, к примеру, деформации.

Сила упругости в пружинном маятнике

Следует учитывать тот момент, что до деформирования пружины она находится в положении равновесия. Приложенная сила может приводить к ее растягиванию и сжиманию. Сила упругости в пружинном маятнике рассчитывается в соответствии с тем, как воздействует закон сохранения энергии. Согласно принятым нормам возникающая упругость пропорциональна смещению тела. В этом случае кинетическая энергия рассчитывается по формуле: F=-kx. В данном случае применяется коэффициент жесткости пружины.

Выделяют довольно большое количество особенностей воздействия силы упругости в пружинном маятнике. Среди особенностей отметим:

  1. Максимальная сила упругости возникает на момент, когда тело находится на максимальном расстоянии от положения равновесия. При этом в подобном положении отмечается максимальное значение ускорение тела. Не следует забывать о том, что может проводится растягивание и сжатие пружины, оба варианта несколько отличается. При сжатии минимальная длина изделия ограничивается. Как правило, она имеет длину, равную диаметру витка умноженное на количество. Слишком большое усилие может стать причиной смещения витков, а также деформации проволоки. При растяжении есть момент удлинения, после которого происходит деформация. Сильное удлинение приводит к тому, что возникающей силы упругости недостаточно для возврата изделия в первоначальное состояние.
  2. При сближении тела к месту равновесия происходит существенное уменьшение длины пружины. За счет этого наблюдается постоянное снижение показателя ускорения. Все это происходит за счет воздействия усилия упругости, которая связано с типом применяемого материала при изготовлении пружины и ее особенностями. Длина уменьшается за счет того, что расстояние между витками снижается. Особенностью можно назвать равномерное распределение витков, лишь только в случае дефектов есть вероятность нарушения подобного правила.
  3. На момент достижения точки равновесия сила упругости снижается до нуля. Однако, скорость не снижается, так как тело движется по инерции. Точка равновесия характеризуется тем, что длина изделия в ней сохраняется на протяжении длительного периода при условии отсутствия внешнего деформирующего усилия. Точка равновесия определяется в случае построения схемы.
  4. После достижения точки равновесия возникающая упругость начинает снижать скорость перемещения тела. Она действует в противоположном направлении. При этом возникает усилие, которое направлено в обратную сторону.
  5. Дойдя крайней точки тело начинает двигаться в противоположную сторону. В зависимости от жесткости установленной пружины подобное действие будет повторятся неоднократно. Протяженность этого цикла зависит от самых различных моментов. Примером можно назвать массу тела, а также максимальное приложенное усилие для возникновения деформации. В некоторых случаях колебательные движения практически незаметны, но они все же возникают.

Приведенная выше информация указывает на то, что колебательные движения совершаются за счет воздействия упругости. Деформация происходит за счет приложенного усилия, которое может варьировать в достаточно большом диапазоне, все зависит от конкретного случая.

Уравнения колебаний пружинного маятника

Колебания пружинного маятника совершаются по гармоническому закону. Формула, по которой проводится расчет, выглядит следующим образом: F(t)=ma(t)=-mw2x(t).

В приведенной выше формуле указывается (w) радиальная частота гармонического колебания. Она свойственна силе, которая распространяется в границах применимости закона Гука. Уравнение движения может существенно отличаться, все зависит от конкретного случая.

Если рассматривать колебательное движение, то следует уделить внимание следующим моментам:

  1. Колебательные движения наблюдаются только в конце перемещения тела. Изначально оно прямолинейное до полного освобождения усилия. При этом сила упругости сохраняется на протяжении всего времени, пока тело находится в максимально отдаленном положении от нуля координат.
  2. После растяжения тело возвращается в исходное положение. Возникающая инерция становится причиной, по которой может оказываться воздействие на пружину. Инерция во многом зависит от массы тела, развитой скорости и многих других моментов.

Уравнения колебаний пружинного маятника

В результате этого возникает колебание, которое может длиться в течение длительного периода. Приведенная выше формула позволяет провести расчет с учетом всех моментов.

Формулы периода и частоты колебаний пружинного маятника

При проектировании и вычислении основных показателей также уделяется довольно много внимания частоте и периоду колебания. Косинус – периодическая функция, в которой применяется значение, неизменяемое через определенный промежуток времени. Именно этот показатель называют период колебаний пружинного маятника. Для обозначения этого показателя применяется буква Т, также часто используется понятие, характеризующее значение, обратное периоду колебания (v). В большинстве случаев при расчетах применяется формула T=1/v.

Период колебаний вычисляется по несколько усложненной формуле. Она следующая: T=2п√m/k. Для определения частоты колебания используется формула: v=1/2п√k/m.

Рассматриваемая циклическая частота колебаний пружинного маятника зависит от следующих моментов:

  1. Масса груза, который прикреплен к пружине. Этот показатель считается наиболее важным, так как оказывает влияние на самые различные параметры. От массы зависит сила инерции, скорость и многие другие показатели. Кроме этого, масса груза – величина, с измерением которой не возникает проблем из-за наличия специального измерительного оборудования.
  2. Коэффициент упругости. Для каждой пружины этот показатель существенно отличается. Коэффициент упругости указывается для определения основных параметров пружины. Зависит этот параметр от количества витков, длины изделия, расстояние между витками, их диаметра и многого другого. Определяется он самым различным образом, зачастую при применении специального оборудования.

Не стоит забывать о том, что при сильном растяжении пружины закон Гука прекращает действовать. При этом период пружинного колебания начинает зависеть от амплитуды.

Для измерения периода применяется всемирная единица времени, в большинстве случаев секунды. В большинстве случаев амплитуда колебаний вычисляется при решении самых различных задач. Для упрощения процесса проводится построение упрощенной схемы, на которой отображаются основные силы.

Период колебаний и частота

Формулы амплитуды и начальной фазы пружинного маятника

Определившись с особенностями проходимых процессов и зная уравнение колебаний пружинного маятника, а также начальные значения можно провести расчет амплитуды и начальной фазы пружинного маятника. Для определения начальной фазы применяется значение f, амплитуда обозначается символом A.

Для определения амплитуды может использоваться формула: А=√x2+v2/w2. Начальная фаза высчитывается по формуле: tgf=-v/xw.

Применяя эти формулы можно провести определение основных параметров, которые применяются при расчетах.

Энергия колебаний пружинного маятника

Рассматривая колебание груза на пружине нужно учитывать тот момент, что при движение маятника может описываться двумя точками, то есть оно носит прямолинейный характер. Этот момент определяет выполнение условий, касающихся рассматриваемой силы. Можно сказать, что полная энергия потенциальная.

Провести расчет энергии колебаний пружинного маятника можно при учете всех особенностей. Основными моментами назовем следующее:

  1. Колебания могут проходить в горизонтальной и вертикальной плоскости.
  2. Ноль потенциальной энергии выбирается в качестве положения равновесия. Именно в этом месте устанавливается начало координат. Как правило, в этом положении пружина сохраняет свою форму при условии отсутствия деформирующей силы.
  3. В рассматриваемом случае рассчитываемая энергия пружинного маятника не учитывает силу трения. При вертикальном расположении груза сила трения несущественна, при горизонтальном тело находится на поверхности и при движении может возникнуть трение.
  4. Для расчета энергии колебания применяется следующая формула: E=-dF/dx.

Приведенная выше информация указывают на то, что закон сохранения энергии выглядит следующим образом: mx2/2+mw2x2/2=const. Применяемая формула говорит о следующем:

  1. Максимальная кинетическая энергия установленного маятника прямо пропорциональна максимальному значению потенциальной.
  2. На момент осциллятора среднее значение обоих сил равны.

Энергия пружинного маятника

Провести определение энергии колебания пружинного маятника можно при решении самых различных задач.

Свободные колебания пружинного маятника

Рассматривая то, чем вызваны свободные колебания пружинного маятника следует уделить внимание действию внутренних сил. Они начинают формироваться практически сразу после того, как телу было передано движение. Особенности гармонических колебаний заключаются в нижеприведенных моментах:

  1. Могут также возникать и другие типы сил воздействующего характера, который удовлетворяют все нормы закона, называются квазиупругими.
  2. Основными причинами действия закона могут быть внутренние силы, которые формируются непосредственно на момент изменения положения тела в пространстве. При этом груз обладает определенной массой, усилие создается за счет фиксации одного конца за неподвижный объект с достаточной прочностью, второго за сам груз. При условии отсутствия трения тело может совершать колебательные движения. В этом случае закрепленный груз называется линейным.

Колебания пружинного маятника

Не стоит забывать о том, что существует просто огромное количество различных видов систем, в которых осуществляется движение колебательного характера. В них также возникает упругая деформация, которая становится причиной применения для выполнения какой-либо работы.

Основные формулы по физике - КОЛЕБАНИЯ И ВОЛНЫ

При изучении этого раздела следует иметь в виду, что колебания различной физической природы описываются с единых математических позиций. Здесь надо четко уяснить такие понятия, как гармоническое колебание, фаза, разность фаз, амплитуда, частота, период колебани.

Надо иметь в виду, что во всякой реальной колебательной системе есть сопротивления среды, т.е. колебания будут затухающими. Для характеристики затухания колебаний вводится коэффициент затухания и логарифмический декремент затухани.

Если колебания совершаются под действием внешней, периодически изменяющейся силы, то такие колебания называют вынужденными. Они будут незатухающими. Амплитуда вынужденных колебаний зависит от частоты вынуждающей силы. При приближении частоты вынужденных колебаний к частоте собственных колебаний амплитуда вынужденных колебаний резко возрастает. Это явление называется резонансом.

Переходя к изучению электромагнитных волн нужно четко представлять, что электромагнитная волна - это распространяющееся в пространстве электромагнитное поле. Простейшей системой, излучающей электромагнитные волны, является электрический диполь. Если диполь совершает гармонические колебания, то он излучает монохроматическую волну.

Смотрите также основные формулы квантовой физики

Таблица формул: колебания и волны

Физические законы, формулы, переменные

Формулы колебания и волны

Уравнение гармонических  колебаний:

  где х - смещение (отклонение) колеблющейся величины от положения равновесия;

  А - амплитуда;

  ω - круговая (циклическая) частота;

  t - время;

  α - начальная фаза;

  (ωt+α ) - фаза.

101

Связь между периодом и круговой частотой:

102

Частота:

103

Связь круговой частоты с частотой:

104

Периоды собственных колебаний

1) пружинного маятника:

    где k - жесткость пружины;

2) математического маятника:

    где l - длина маятника,

    g - ускорение свободного падения;

3) колебательного контура:

    где L - индуктивность контура,

    С - емкость конденсатора.

Частота собственных колебаний:

108

Сложение колебаний одинаковой частоты и направления:

1) амплитуда результирующего колебания

    где А1 и А2 - амплитуды составляющих колебаний,

    α1 и α2 - начальные фазы составляющих колебаний;

2) начальная фаза результирующего колебания

1)

 109

2)

 110

Уравнение затухающих колебаний:

е = 2,71... - основание натуральных логарифмов.

111

Амплитуда затухающих колебаний:

где А0 - амплитуда в начальный момент времени;

β - коэффициент затухания;

t - время.

112

Коэффициент затухания:

колеблющегося тела

где r - коэффициент сопротивления среды,

m - масса тела;

колебательного контура

где R - активное сопротивление,

L - индуктивность контура.

113

114

Частота затухающих колебаний ω:

115

Период затухающих колебаний Т:

116

Логарифмический декремент затухания:

117

Связь логарифмического декремента χ и коэффициента затухания β:

118

Амплитуда вынужденных колебаний

где ω - частота вынужденных колебаний,

fо - приведенная амплитуда вынуждающей силы,

при механических колебаниях:

при электромагнитных колебаниях:

119

120

121

Резонансная частота

122

Резонансная амплитуда

123

Полная энергия колебаний:

124

Уравнение плоской волны:

где ξ - смещение точек среды с координатой х в момент времени t;

k - волновое число:

125

126

Длина волны:

где v скорость распространения колебаний в среде,

Т - период колебаний.

127

Связь разности фаз Δφ колебаний двух точек среды с расстоянием Δх между точками среды:

128

Механические колебания.

Автор — профессиональный репетитор, автор учебных пособий для подготовки к ЕГЭ

Игорь Вячеславович Яковлев

Темы кодификатора ЕГЭ : гармонические колебания; амплитуда, период, частота, фаза колебаний; свободные колебания, вынужденные колебания, резонанс.

Колебания - это повторяющиеся во времени изменения состояния системы. Понятие колебаний охватывает очень широкий круг явлений.

Колебания механических систем, или механические колебания - это механическое движение тела или системы тел, которое обладает повторяемостью во времени и происходит в окрестности положения равновесия. Положением равновесия называется такое состояние системы, в котором она может оставаться сколь угодно долго, не испытывая внешних воздействий.

Например, если маятник отклонить и отпустить, то начнутся колебания. Положение равновесия - это положение маятника при отсутствии отклонения. В этом положении маятник, если его не трогать, может пребывать сколь угодно долго. При колебаниях маятник много раз проходит положение равновесия.

Сразу после того, как отклонённый маятник отпустили, он начал двигаться, прошёл положение равновесия, достиг противоположного крайнего положения, на мгновение остановился в нём, двинулся в обратном направлении, снова прошёл положение равновесия и вернулся назад. Совершилось одно полное колебание. Дальше этот процесс будет периодически повторяться.

Амплитуда колебаний тела - это величина его наибольшего отклонения от положения равновесия.

Период колебаний T - это время одного полного колебания. Можно сказать, что за период тело проходит путь в четыре амплитуды.

Частота колебаний \nu - это величина, обратная периоду: \nu =1/T. Частота измеряется в герцах (Гц) и показывает, сколько полных колебаний совершается за одну секунду.

Гармонические колебания.

Будем считать, что положение колеблющегося тела определяется одной-единственной координатой

x

. Положению равновесия отвечает значение

x=0

. Основная задача механики в данном случае состоит в нахождении функции

x(t)

, дающей координату тела в любой момент времени.

Для математического описания колебаний естественно использовать периодические функции. Таких функций много, но две из них - синус и косинус - являются самыми важными. У них много хороших свойств, и они тесно связаны с широким кругом физических явлений.

Поскольку функции синус и косинус получаются друг из друга сдвигом аргумента на \pi /2, можно ограничиться только одной из них. Мы для определённости будем использовать косинус.

Гармонические колебания - это колебания, при которых координата зависит от времени по гармоническому закону:

x=Acos(\omega t+\alpha ) (1)

Выясним смысл входящих в эту формулу величин.

Положительная величина A является наибольшим по модулю значением координаты (так как максимальное значение модуля косинуса равно единице), т. е. наибольшим отклонением от положения равновесия. Поэтому A - амплитуда колебаний.

Аргумент косинуса \omega t+\alpha называется фазой колебаний. Величина \alpha , равная значению фазы при t=0 , называется начальной фазой. Начальная фаза отвечает начальной координате тела: x_{0}=Acos \alpha .

Величина называется \omega циклической частотой. Найдём её связь с периодом колебаний T и частотой \nu. Одному полному колебанию отвечает приращение фазы, равное 2 \pi радиан: \omega T=2 \pi, откуда

\omega = \frac{\displaystyle 2\pi }{\displaystyle T} (2)

\omega =2 \pi \nu (3)

Измеряется циклическая частота в рад/с (радиан в секунду).

В соответствии с выражениями (2) и (3) получаем ещё две формы записи гармонического закона (1):

x=Acos(\frac{\displaystyle 2\pi t }{\displaystyle T}+ \alpha), x=Acos(2 \pi \nu t + \alpha).

График функции (1), выражающей зависимость координаты от времени при гармонических колебаниях, приведён на рис. 1.

Рис. 1. График гармонических колебаний

Гармонический закон вида (1) носит самый общий характер. Он отвечает, например, ситуации, когда с маятником совершили одновременно два начальных действия: отклонили на величину x_{0} и придали ему некоторую начальную скорость. Имеются два важных частных случая, когда одно из этих действий не совершалось.

Пусть маятник отклонили, но начальной скорости не сообщали (отпустили без начальной скорости). Ясно, что в этом случае x_{0}=A, поэтому можно положить \alpha=0. Мы получаем закон косинуса:

x=Acos \omega t.

График гармонических колебаний в этом случае представлен на рис. 2.

Рис. 2. Закон косинуса

Допустим теперь, что маятник не отклоняли, но ударом сообщили ему начальную скорость из положения равновесия. В этом случае x_{0}=0, так что можно положить \alpha =-\pi /2. Получаем закон синуса:

x=Asin \omega t.

График колебаний представлен на рис. 3.

Рис. 3. Закон синуса

Уравнение гармонических колебаний.

Вернёмся к общему гармоническому закону

(1)

. Дифференцируем это равенство:

v_{x}=\dot{x}=-A\omega sin(\omega t+\alpha ). (4)

Теперь дифференцируем полученное равенство (4):

a_{x}=\ddot{x}=-A\omega^{2} cos(\omega t+\alpha ). (5)

Давайте сопоставим выражение (1) для координаты и выражение (5) для проекции ускорения. Мы видим, что проекция ускорения отличается от координаты лишь множителем -\omega^{2}:

a_{x}=-\omega^{2}x. (6)

Это соотношение называется уравнением гармонических колебаний. Его можно переписать и в таком виде:

\ddot{x}+\omega^{2}x=0. (7)

C математической точки зрения уравнение (7) является дифференциальным уравнением. Решениями дифференциальных уравнений служат функции (а не числа, как в обычной алгебре).Так вот, можно доказать, что:

-решением уравнения (7) является всякая функция вида (1) с произвольными A, \alpha;

-никакая другая функция решением данного уравнения не является.

Иными словами, соотношения (6), (7) описывают гармонические колебания с циклической частотой \omega и только их. Две константы A, \alpha определяются из начальных условий - по начальным значениям координаты и скорости.

Пружинный маятник.

Пружинный маятник

- это закреплённый на пружине груз, способный совершать колебания в горизонтальном или вертикальном направлении.

Найдём период малых горизонтальных колебаний пружинного маятника (рис. 4). Колебания будут малыми, если величина деформации пружины много меньше её размеров. При малых деформациях мы можем пользоваться законом Гука. Это приведёт к тому, что колебания окажутся гармоническими.

Трением пренебрегаем. Груз имеет массу m, жёсткость пружины равна k.

Координате x=0отвечает положение равновесия, в котором пружина не деформирована. Следовательно, величина деформации пружины равна модулю координаты груза.

Рис. 4. Пружинный маятник

В горизонтальном направлении на груз действует только сила упругости \vec F со стороны пружины. Второй закон Ньютона для груза в проекции на ось X имеет вид:

ma_{x}=F_{x}. (8)

Если x>0 (груз смещён вправо, как на рисунке), то сила упругости направлена в противоположную сторону, и F_{x}<0. Наоборот, если x<0, то F_{x}>0. Знаки x и F_{x} всё время противоположны, поэтому закон Гука можно записать так:

F_{x}=-kx

Тогда соотношение (8) принимает вид:

ma_{x}=-kx

или

a_{x}=-\frac{\displaystyle k}{\displaystyle m}x.

Мы получили уравнение гармонических колебаний вида (6), в котором

\omega ^{2}=\frac{\displaystyle k}{\displaystyle m}.

Циклическая частота колебаний пружинного маятника, таким образом, равна:

\omega =\sqrt{\frac{\displaystyle k}{\displaystyle m}}. (9)

Отсюда и из соотношения T=2 \pi / \omega находим период горизонтальных колебаний пружинного маятника:

T=2 \pi \sqrt{\frac{\displaystyle m}{\displaystyle k}}. (10)

Если подвесить груз на пружине, то получится пружинный маятник, совершающий колебания в вертикальном направлении. Можно показать, что и в этом случае для периода колебаний справедлива формула (10).

Математический маятник.

Математический маятник

- это небольшое тело, подвешенное на невесомой нерастяжимой нити (рис.

5

). Математический маятник может совершать колебания в вертикальной плоскости в поле силы тяжести.

Рис. 5. Математический маятник

Найдём период малых колебаний математического маятника. Длина нити равна l. Сопротивлением воздуха пренебрегаем.

Запишем для маятника второй закон Ньютона:

m \vec a=m \vec g + \vec T,

и спроектируем его на ось X:

ma_{x}=T_{x}.

Если маятник занимает положение как на рисунке (т. е. x>0), то:

T_{x}=-Tsin\varphi =-T\frac{\displaystyle x}{\displaystyle l}.

Если же маятник находится по другую сторону от положения равновесия (т. е. x<0), то:

T_{x}=Tsin\varphi =-T\frac{\displaystyle x}{\displaystyle l}.

Итак, при любом положении маятника имеем:

ma_{x}=-T\frac{\displaystyle x}{\displaystyle l}. (11)

Когда маятник покоится в положении равновесия, выполнено равенство T=mg. При малых колебаниях, когда отклонения маятника от положения равновесия малы (по сравнению с длиной нити), выполнено приближённое равенство T \approx mg. Воспользуемся им в формуле (11):

ma_{x}=-mg\frac{\displaystyle x}{\displaystyle l},

или

a_{x}=-\frac{\displaystyle g}{\displaystyle l}x.

Это - уравнение гармонических колебаний вида (6), в котором

\omega ^{2}=\frac{\displaystyle g}{\displaystyle l}.

Следовательно, циклическая частота колебаний математического маятника равна:

\omega =\sqrt{\frac{\displaystyle g}{\displaystyle l}}. (12)

Отсюда период колебаний математического маятника:

T=2\pi \sqrt{\frac{\displaystyle l}{\displaystyle g}}. (13)

Обратите внимание, что в формулу (13) не входит масса груза. В отличие от пружинного маятника, период колебаний математического маятника не зависит от его массы.

Свободные и вынужденные колебания.

Говорят, что система совершает

свободные колебания

, если она однократно выведена из положения равновесия и в дальнейшем предоставлена сама себе. Никаких периодических внешних

воздействий система при этом не испытывает, и никаких внутренних источников энергии, поддерживающих колебания, в системе нет.

Рассмотренные выше колебания пружинного и математического маятников являются примерами свободных колебаний.

Частота, с которой совершаются свободные колебания, называется собственной частотой колебательной системы. Так, формулы (9) и (12) дают собственные (циклические) частоты колебаний пружинного и математического маятников.

В идеализированной ситуации при отсутствии трения свободные колебания являются незатухающими, т. е. имеют постоянную амплитуду и длятся неограниченно долго. В реальных колебательных системах всегда присутствует трение, поэтому свободные колебания постепенно затухают (рис. 6).

Рис. 6. Затухающие колебания

Вынужденные колебания - это колебания, совершаемые системой под воздействием внешней силы F(t), периодически изменяющейся во времени (так называемой вынуждающей силы).

Предположим, что собственная частота колебаний системы равна \omega_{0}, а вынуждающая сила зависит от времени по гармоническому закону:

F(t)=F_{0}cos \omega t.

В течение некоторого времени происходит установление вынужденных колебаний: система совершает сложное движение, которое является наложением выужденных и свободных колебаний. Свободные колебания постепенно затухают, и в установившемся режиме система совершает вынужденные колебания, которые также оказываются гармоническими. Частота установившихся вынужденных колебаний совпадает с частотой\omega вынуждающей силы (внешняя сила как бы навязывает системе свою частоту).

Амплитуда установившихся вынужденных колебаний зависит от частоты вынуждающей силы. График этой зависимости показан на рис. 7.

Рис. 7. Резонанс

Мы видим, что вблизи частоты \omega=\omega_{r} наступает резонанс - явление возрастания амплитуды вынужденных колебаний. Резонансная частота приближённо равна собственной частоте колебаний системы: \omega_{r} \approx \omega_{0}, и это равенство выполняется тем точнее, чем меньше трение в системе. При отсутствии трения резонансная частота совпадает с собственной частотой колебаний, \omega_{r} = \omega_{0}, а амплитуда колебаний возрастает до бесконечности при \omega \Rightarrow \omega_{0}.

Амплитуда колебаний – это максимальное значение отклонения от нулевой точки. В физике данный процесс анализируется в разных разделах. 

Он изучается при механических, звуковых и электромагнитных колебаниях. В перечисленных случаях амплитуда измеряется по-разному и по своим законам.

Амплитуда колебаний

Амплитудой колебания называют максимальную отдаленную точку нахождения тела от положения равновесия. В физике она обозначается буквой А и измеряется в метрах. 

За амплитудой можно наблюдать на простом примере пружинного маятника.

Пружинный маятник 

В идеальном случае, когда игнорируется сопротивление воздушного пространства и трение пружинного устройства, устройство будет колебаться бесконечно. Описание движения выполняется с помощью функций cos и sin:

x(t) = A * cos(ωt + φ0) или x(t) = A * sin(ωt + φ0),

где 

  • величина А – это амплитуда свободных движений груза на пружине;

  • (ωt + φ0) – это фаза свободных колебаний, где ω - это циклическая частота, а φ0 – это начальная фаза, когда t = 0. 

002

В физике указанную формулу называют уравнением гармонических колебаний. Данное уравнение полностью раскрывает процесс, где маятник движется с определенной амплитудой, периодом и частотой. 

Период колебаний

Результаты лабораторных опытов показывают, что циклический период движения груза на пружине напрямую зависит от массы маятника и жесткости пружины, но не зависит от амплитуды движения. 

В физике период обозначают буквой Т и описывают формулами:

Период колебаний

Исходя из формул, период колебаний – это механические движения, повторяющиеся через определенный промежуток времени. Простыми словами периодом называют одно полное движение груза.

Частота колебаний

Под частотой колебаний следует понимать количество повторений движения маятника или прохождения волны. В разных разделах физики частота обозначается буквами ν, f или F. 

Данная величина описывается выражением:

v = n/t – количество колебаний за промежуток времени,

где 

В Международной системе измерений частоту измеряют в Гц (Герцах). Она относится к точным измеряемым составляющим колебательного процесса. 

Например, наукой установлена частота вращения Солнца вокруг центра Вселенной. Она равна -1035 Гц при одинаковой скорости.

Циклическая частота

В физике циклическая и круговая частота имеют одинаковое значение. Данная величина еще называется угловой частотой. 

Циклическая частота

Обозначают ее буквой омега. Она равна числу собственных колебательных движений тела за 2π секунд времени:

ω = 2π/T = 2πν.

Данная величина нашла свое применение в радиотехнике и, исходя из математического расчета, имеет скалярную характеристику. Ее измерения проводят в радианах на секунду. С ее помощью значительно упрощаются расчеты процессов в радиотехнике. 

Например, резонансное значение угловой частоты колебательного контура рассчитывают по формуле:

WLC = 1/LC.

Тогда как обычная циклическая резонансная частота выражается:

VLC = 1/2π*√ LC.

В электрике под угловой частотой следует понимать число полных трансформаций ЭДС или число оборотов радиуса – вектора. Здесь ее обозначают буквой f.

Как определить амплитуду, период и частоту колебаний по графику

Для определения на графике составляющих колебательного механического процесса или, например, колебания температуры, нужно разобраться в терминах этого процесса. 

К ним относят:

  • расстояние испытываемого объекта от исходной точки – называют смещением и обозначают х;

  • наибольшее отклонение – амплитуда смещения А;

  • фаза колебания – определяет состояние колебательной системы в любой момент времени;

  • начальная фаза колебательного процесса – когда t = 0, то φ = φ0.

402

Из графика видно, что значение синуса и косинуса может меняться от -1 до +1. Значит, смещение х может быть равно –А и +А. Движение от –А до +А называют полным колебанием.

Построенный график четко показывает период и частоту колебаний. Стоить отметить, что фаза не воздействует на форму кривой, а только влияет на ее положение в заданный промежуток времени.

Leave a Reply